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ABSTRACT: The objective of the present study is to pre-
dict Young’s modulus of polymer-layered silicate nano-
composites (PLSNs) containing fully intercalated
structures. The particular contribution of this article is to
consider the changes in structural parameters of different
intercalated morphologies in vicinity of each other. These
parameters include aspect ratio of intercalated stacks,
number of silicate layers per stack, d-spacing between the
layers, modulus of the gallery phase, and volume fraction
of each intercalated morphology. To do this, the effective
particle concept has been employed and combined with
the Mori-Tanaka micromechanical model. It has been

shown that the simultaneous effects of d-spacing between
the silicate layers and gallery phase modulus remarkably
influence the nanocomposite’s modulus. Finally, the micro-
mechanical modeling results have been compared with the
experimental data and illustrates that the new approach is
more accurate than the earlier model developed by the
same authors. VC 2010 Wiley Periodicals, Inc. J Appl Polym Sci
119: 3347–3359, 2011
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INTRODUCTION

Outstanding mechanical properties,1,2 reduced flam-
mability,3,4 and gas permeability5,6 of the polymer
layered silicate nanocomposites (PLSNs) have
attracted investigators in recent years. The enhance-
ments are function of the large aspect ratio and large
surface area of the clay mineral, the strong interac-
tions between the polymer chains and the layered
silicate, and the nano-scale structure of the polymer
nanocomposite.7

The morphology of PLSNs has a hierarchical
structure demonstrating nano-, meso-, and micro-
level morphologies in the vicinity of each other. The
clay dispersion in the matrix is typically described
in terms of intercalation versus exfoliation. In the
intercalated structure, polymer chains enter into the
gallery spacing between the clay platelets and
expanded them to a typical interlayer spacing of the
order of 1–4 nm. This spacing can be measured by
X-ray diffraction method. In the exfoliated nano-
structure, the clay platelets are individually dis-
persed in the polymer matrix and optimal interac-
tion between the clay and polymer occurs.8 How-
ever, the structural parameters affecting the

mechanical properties of PLSNs containing interca-
lated structures are much more than those with exfo-
liated structures.9 These parameters are listed below
and some of them have been experimentally investi-
gated by the researchers10–17:

• exfoliated/intercalated ratio,10–13

• aspect ratio of both clay platelets and stacks,14,15

• silicate layer spacing (d-spacing),16

• number of the silicate layers per stack, and
• properties of the gallery phase between the sili-
cate layers.

Although there have been numerous material syn-
theses, tests and characterizations of PLSNs with fully
intercalated structures, the fundamental mechanisms
for mechanical properties enhancement are not fully
understood and are rarely discussed.17–20 Therefore,
conducting some qualitative and quantitative analysis
to predict the stiffening effect of the silicate nano-
layers would accelerate the development of such
nanocomposites. Among different models proposed
in this area, several micromechanical approaches21–30

in particular to those which are based on the Mori-
Tanaka model31 are mostly considered and devel-
oped. The Mori-Tanaka model has proven to be quite
accurate in predicting the effective mechanical prop-
erties of various composites with either random orien-
tation or total alignment of the reinforcements.32

However, only a few researches24,25 based on the
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Mori-Tanaka theory have investigated the complex
effects of such structural parameters in PLSNs with
fully intercalated structures.

Figiel and Buckly21 in their recent study employed
the concept of the effective particle in calculating the
elastic constants with two continuum approaches
including the FEM-based numerical analysis and the
Mori-Tanaka theory. They found that the effective
particle approach was a useful and accurate means
of homogenizing the stacks of platelets in a nano-
composite with intercalated morphology. Luo and
Daniel24 applied the Mori-Tanaka model to predict
the modulus of PLSNs as a function of structural pa-
rameters. Besides, Sheng et al.25 predicted the overall
elastic modulus of the amorphous and semicrystal-
line polymer clay nanocomposites and their depend-
ence on the matrix and clay properties as well as in-
ternal clay structural parameters.

However, there seems to be some major deficiencies
in the research studies mentioned above.21,24,25 New
TEM studies17 illustrated that in some cases, different
intercalated morphologies can be present in a single
polymer matrix, the point which has not been regarded
before. Besides, Adame and Beall33 based on the AFM
observations showed that the gallery phase between
the silicate layers in the intercalated structures has a
main contribution on the properties of PLSNs.

Considering above deficiencies, the authors in
their previous work34 proposed an approach based
on the Halpin-Tsai model and the effective particle
concept to predict the modulus of PLSNs with dif-
ferent intercalated morphologies. Although this
approach considered most of the structural parame-
ters which had not been reported before and fitted
some of the experimental data in a satisfactory way,
it could not predict very well some of the experi-
ments, especially those which are concerning the d-
spacing variations between the silicate layers. This
might be firstly due to the fact that reinforcements
in the Halpin-Tsai model have unidirectional orien-
tations within the matrix. Besides, the model is not
as accurate as the Mori-Tanaka model to predict
Young’s modulus of the composites containing fill-
ers with large aspect ratio.32 Therefore, the authors
in their present study employed the Mori-Tanaka
model in estimating the nanocomposite’s modulus
with different intercalated morphologies. Corre-
spondingly, the new model considers various struc-
tural parameters including d-spacing between the
silicate layers, the number of silicate sheets per
stack, the contributions of the gallery phase in each
cluster and aspect ratio of the intercalated stack.
Because the multi-scale micromechanical model
based on the Mori-Tanaka can consider a more com-
plex shape of reinforcements, it shows better agree-
ment with the experimental data than the previous
approach proposed by the authors.34

PLSNs containing fully intercalated structure

Because most of PLSNs demonstrate partially or fully
intercalated structure, nowadays, extensive studies
have been conducted either experimentally10–16 or
theoretically24,25,34 to investigate the effects of nano-
structural parameters on Young’s modulus of the
nanocomposites. Penetration of polymer chains along
silicate layers is the most characteristic of those struc-
tures which consequently composes the so-called
‘‘gallery phase’’ (Fig. 1). This phase is consisted of
polymer chains and chemical compounds added dur-
ing various stages of synthesis and processing. Up to
now, it is speculated that intercalated stacks are
homogeneously distributed through the polymer ma-
trix,24,25 however, in some cases different intercalated
morphologies can be characterized (Fig. 2). These dif-
ferences are mostly due to the number of silicate
layers per stack (N), d-spacing between the layers
(d001) and gallery phase modulus (Eg). The main pur-
pose of this research is to propose a multi-scale
micromechanical approach based on the Mori-Tanaka
model that considers different intercalated morpholo-
gies in the vicinity of each other. However, there is
no report in the literature investigating microme-
chanically these complex hierarchical structures.

Micromechanical approach

Here, Young’s modulus of polymer layered silicate
nanocomposites with fully intercalated structures, as
described in previous section, is predicted. After
providing a good background for the Mori-Tanaka
model in Background section, the effective particle
concept in Model development section is employed
in estimating the nanostructural characteristics of
different intercalated morphologies in vicinity of
each other. Then, these two models are combined
and the stiffness tensor of such nanocomposite is
predicted as a function of structural characteristics.

Background

The effective stiffness tensor (C) of the composite
can be expressed by using the Mori-Tanaka
method31 adapted by Benveniste37,38 as:

C ¼ C1 þ
XN
r¼2

crfðCr � C1ÞTrg
XN
r¼1

crfTrg
" #�1

(1)

where the capital letters represent tensors. The com-
posite is consisted of (N�1) kinds of discrete inclu-
sions (r ¼ 2,. . ., N) that can be different in stiffness
and/or shape. The volume fraction of the r-th phase is
denoted by (cr). In the present article, we always
assume that the continuous matrix is an isotropic ma-
terial which simulates a polymer. The tensor Tr,
namely, the so-called Wu’s tensor,39 in eq. (1) is:
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Tr ¼ ½lþ SrC
�1
1 ðCr � C1Þ��1 (2)

where Sr is the Eshelby’s transformation tensor40

corresponding to the r-th phase that can be found in
the Ref. 41 as shown in Appendix. Ir is the fourth-
order symmetric unit tensor. Curly brackets {} in eq.
(1) represent an average over all possible orienta-

tions. When the orientation of each inclusion is
described using the Euler angles (Fig. 3), the orienta-
tion-dependent part can be expressed as:

Cijkl ¼ aipajqakralsCpqrs (3)

where the components of aij (/, w, y) can be written as:

Figure 2 TEM images of (a) Epoxy-5 wt %36 and (b) Epoxy-3 wt %17 clay nanocomposites containing six different inter-
calated morphologies.

Figure 1 (a) TEM image of poly styrene-3 wt % clay nanocomposite together with schematic illustration of intercalated
structure. (b) Schematic illustration of a three dimensional ellipsoidal inclusion, characterized by two aspect ratios. A pri-
mary aspect ratio a ¼ a1/a3 and a secondary aspect ratio b ¼ a1/a2.

41 (Adapted from Ref. 35).
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aij
� � ¼ cos h cosu cosw� sinu sinw cos h sinu cosw� cosu sinw � sin h cosw

� cos h cosu sinw� sinu cosw � cos h cosu sinw� cosu cosw sin h sinw
sin h cosu sin h sinu cos h

2
4

3
5 (4)

The orientation average then follows from:

Cf g ¼
Z2p
0

Z2p
0

Zp
0

Cijklðh;u;wÞ � f ðh;u;wÞ � sinðhÞdhdudw

(5)

where f (/, w, y) is the orientation distribution func-
tion defined in the Euler coordinates (/, w, y). Finally,
the effective Young’s modulus (E) of the composite is
obtained through the following relation:

E ¼ C11 � C2
12

C11 þ C12
(6)

Model development

To obtain the effective stiffness tensor of such nano-
composites, a representative volume element (RVE)
according to the heterogeneous intercalated structure
is needed. The RVE should be the smallest possible
unit which includes all distinct parameters of the
hierarchical structure, as shown in Figure 4. In the
real cases, there are different intercalated morpholo-
gies within a polymer matrix, as shown in Figure 2.
However, to avoid being confused the sensitivity
analysis in Numerical Results and Discussion sec-
tion, the RVE in this article is consisted of only two
various intercalated morphologies. These morpholo-
gies are quite different from each others from aspect
ratio, d-spacing, gallery phase modulus, and number
of silicate layers points of view.

Accordingly, the three phase form of the Mori-
Tanaka model has been employed as follows:

C ¼ C1 þ ½c2fðC2 � C1ÞT2g
þc3fðC3 � C1ÞT3g�½c1I þ c2fT2g þ c3fT3g��1 ð7Þ

where the corresponding Wu’s tensor can be written
as:

T3 ¼ ½I þ S3C
�1
1 ðC3 � C1Þ��1 (8)

T2 ¼ ½I þ S2C
�1
1 ðC2 � C1Þ��1 (9)

In eqs. (7)–(9), the subscripts 1–3 denote the poly-
mer matrix, intercalated morphology 1 and interca-
lated morphology 2, respectively.
Basically, the Mori-Tanaka model [eqs. (7)–(9)] is

consisted of four significant elements, including stiff-
ness tensor (Ci), Eshelby’s tensor (Si), average over
all possible directions {}, and volume fraction (ci), as
shown in Figure 5.
As seen in Figure 5, to compute each part of eqs.

(7)–(9), it is needed to correlate the properties of
each phase (i.e., Young’s modulus, Poisson’s ratio,
aspect ratio) with the nanostructural parameters (i.e.,
number of silicate layers per stack, d-spacing
between the silicate layers and gallery phase
between the layers). To do this, researchers18,25

based on the experimental observations proposed a
practical model called ‘‘effective particle concept’’
considering homogeneous intercalated structures.
However, recent experimental studies33 have shown
that in some circumstances, different intercalated
morphologies can be obtained in a single polymer
matrix. Therefore, the effective particle concept
should be developed so as to consider a variety of
intercalated morphologies with different volume
fractions and properties. The precise contribution of
this article is to develop the concept for two differ-
ent intercalated morphologies and considers the
effect of gallery phase on Young’s modulus of
PLSNs.
For simplicity, the internal structure of an interca-

lated clay particle is idealized as a multi-layer stack
containing N single silicate sheets with an effective
thickness (ds) and uniform interlayer spacing (d001),
as shown in Figure 1. The particle thickness (t) can
be related to the internal structural parameters N
and d001 through:

t ¼ N � 1ð Þd001 þ ds (10)

The important parameter of the clay particle struc-
ture is the number of silicate sheets per unit particle
thickness (XN):

Figure 3 Euler angles defining the relation between the
local coordinate system (102030) and the global coordinate
system (123).41
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Figure 5 The sequential procedure employed here to solve the three phase form of the Mori-Tanaka equations.

Figure 4 Schematic representation of the different morphologies of an intercalated structure (RVE) dispersed within the poly-
mer matrix. (Ni: number of silicate layers per stack, di: spacing between silicate layers, Eg ¼ modulus of the gallery phase).



XN ¼ N

t
¼ N

N � 1ð Þd001 þ ds
(11)

It can be alternatively expressed as the volume
fraction of silicate in the effective particle (X):

X ¼ Vc

Vp
¼ Nds

N � 1ð Þd001 þ ds
¼ 1

1� 1
N

� �
d001
ds

� �
þ 1

N

h i (12)

where Vc and Vp are the volumes assigned to the sil-
icate sheets in a stack and the effective particle,
respectively. Using eq. (10), the aspect ratio can be
calculated as follows:

L

t
¼ L

N � 1ð Þd001 þ ds
(13)

where L is the length of the intercalated stack and
shown in Figure 1. To normalize the above equa-
tions and assuming L/ds ¼ 100, eqs. (10)–(13) can be
rewritten as:

K ¼ d001
ds

(14)

X ¼ N

K N � 1ð Þ þ 1
(15)

L

t
¼ 100

N � 1ð ÞK þ 1
(16)

Considering the multi-layer clay particle as a lami-
nate structure with isotropic silicate sheets and
orthotropic polymeric galleries, (Fig. 1), the overall
elastic properties of an effective particle can be esti-
mated as:

Ep;11
¼ XNEsilicateds þ 1� Xð ÞEgallery;11

¼ XEsilicate 1� Xð ÞEgallery;11 (17)

Ep;22
¼ EsilicateEgallery;22

1� 2dvgallery
� �½ 1�Xð ÞEsilicate �XEgallery;22�

(18)

d¼ Esilicatevgallery �Egalleryvsilicate

ð1� vgalleryÞEsilicateð1�vgalleryÞEgallery
(19)

vp;12 ¼Xvsilicate þð1�XÞvgallery;12 (20)

Gp;12 ¼
GsilicateGgallery;12

ð1�XÞGsilicate �XGgallery;12
(21)

Although the elastic properties of gallery phase
are not still determined, one can approximate that
Egallery/Esilicate � 1 and Ggallery/Gsilicate � 1.25 In this
case, the overall Ep,22 and Gp,12 will severely decrease

and thus the effect of particle anisotropy can be
neglected. Therefore, only two independent elastic
constants are needed to estimate the overall elastic
properties of the effective particle. In this article, we
approximated Ep and mp with Ep,11 and mp,12, respec-
tively. Consequently, the components of Eshelby
and stiffness tensors of the two intercalated mor-
phologies can be computed using eqs. (16), (17), and
(19), respectively.
Another significant part of eq. (7) is the volume

fraction of each phase, including c1 (polymer ma-
trix), c2 (intercalated morphology 1) and c3 (interca-
lated morphology 2). As it can be expected, these
fractions are correlated to the structural parameters
(N, d001 or K ratio) of the nanocomposite. First of all,
the volume fraction of each phase can be defined
easily as:

c1 þ c2 þ c3 ¼ 1 (22)

c1 ¼ Vm

Vt
(23)

c2 ¼ V2

Vt
(24)

c3 ¼ V3

Vt
(25)

where Vm, V2, V3, and Vt are the volume of the poly-
mer matrix, intercalated morphology 1, intercalated
morphology 2, and the total volume of the nanocom-
posite, respectively. On the other hand, the volume
of each intercalated stack (Fig. 1) can be estimated
as:

V ¼ Vg þ Vc (26)

Vg ¼ NdgLt (27)

Vc ¼ NdsLt (28)

where Vg, Vc, and dg are the volume of gallery
phase, clay layers, and the gallery thickness in each
intercalated stack, respectively.
Alternatively, the volume of gallery phase and

clay layers cane be written as:

Vg ¼
wg

qg
(29)

Vc ¼ wc

qc
(30)

where qg and qc are the gallery phase and clay den-
sities in each intercalated stack, respectively.
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Considering K ratio definition [eq. (14)] and combin-
ing eqs. (26)–(30), the volume of each intercalated
stack (V2, V3) can be estimated as:

wc

wg
¼ 4

ds

dg
¼ 4

K� 1
(31)

V2 ¼ K2Wc; 2

4
(32)

V3 ¼ K3Wc; 3

4
(33)

where K2, K3, Wc,2, and Wc,3 are the d-spacing ratio
of intercalated morphology 1, feature 2, the clay
weight fraction in intercalated morphology 1 and
morphology 2, respectively. It should be noted that
some structural parameters, including qg, qc, Es, ms,
and qm, have been considered constant and are
shown in Table I, based on the values reported in
the literature.14,43,44

The weight fraction of the polymer matrix (Wm)
can also be obtained as:

Wm ¼ 1�Wc; 2 �Wc ;2ðK2 � 1Þ
4

�Wc ;3 �Wc ;3ðK3 � 1Þ
4

(34)

Combining eqs. (22) and (32)–(34), the volume
fraction of each phase can be written as:

c2 ¼ K2Wc ;2

4�Wc; 2ð3þ K2Þ �Wc ;3ð3þ K3Þ (35)

c2 ¼ K3Wc; 3

4�Wc; 2ð3þ K2Þ �Wc ;3ð3þ K3Þ (36)

c1 ¼ 1� c2 � c3 (37)

As can be seen in eqs. (35)–(37), there are some
parameters including the weight fractions of the clay
layers in each intercalated morphology (Wc,2, Wc,3)
which cannot be practically measured and con-
trolled. In other words, the only practical parameter
which can be controlled and measured is the total
clay weight fraction (Wc,t). Therefore, it is needed to
correlate Wc,t to Wc,2, and Wc,3 by defining a new pa-
rameter called ‘‘intercalation ratio’’ (IR). IR is consid-
ered as the ratio of volume fraction of the interca-
lated morphology 1 (V2) to the total volume fraction
of intercalated structures (V2 þ V3) as:

IR ¼ V2

V2 þ V3
(38)

Considering eqs. (32) and (33), the IR can be
rewritten as:

IR ¼ K2Wc; 2

K2Wc ;2 þ K3Wc; 3
(39)

Accordingly, the weight fraction of clay layers in
each intercalated morphology (Wc,2, Wc,3) can be
computed versus total clay weight fraction (Wc,t) as:

wc; 2

wc; 1
¼ K3

K2ð1� IRÞ � a (40)

Wc;t ¼ Wc;2 �Wc;3 (41)

Wc;2 ¼ a
1þ a

Wc;t (42)

Wc;3 ¼ 1

1þ a
Wc;t (43)

Consequently, through the above equations the
clay weight fraction in each intercalated morphology
(Wc,2, Wc,3), which are not practically measurable,
have been calculated based upon the well-known
processing parameters. These parameters include
total clay weight fraction (Wc,t) and d-spacing
between the silicate layers in each intercalated mor-
phology (K2, K3). It should be noted that K and N
parameters associated with each feature can be esti-
mated from X-ray diffraction analysis (XRD) and
TEM images, respectively.17,36,44 In addition, IR of
each fully intercalated specimen can be approxi-
mated using TEM images by either quantitative
analysis or visual identification. Combining eqs.
(40)–(43) with eqs. (35)–(37), the volume fraction of
each phase (c1,c2,c3) are calculated based on the pa-
rameters which can be experimentally measured.
These parameters are the number of silicate layers
per stack (N), the d-spacing between the layers (K),
IR and the total clay weight fraction (Wc,t).
In addition to the Eshelby’s and stiffness tensors

and volume fraction of each phase, the last part of
eq. (7) is averaging over all possible orientations {}
of the intercalated stacks [eqs. (3)–(5)]. Although
researchers such as Schjodt and Pyrz22,45 have pro-
posed some orientation distribution functions for
conventional composites, there seems not to be
applied on PLSNs with hierarchical structures. In

TABLE I
The Constant Parameters Considered in the

Micromechanical Model14,42,43

Parameter Definition Value

qm Density of the polymeric matrix �1 g/cm3

qg Density of the gallery phase �1 g/cm3

qc Density of the clay layers �4 g/cm3

Es Modulus of the silicate sheets �400 GPa
ms Poisson’s ratio of the silicate sheets �0.2
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other words, it is difficult to define a specific distri-
bution function for different structural scales in vi-
cinity of each other. On the other hand, many TEM
images such as that shown in Figure 646 illustrate
approximately a random distribution of both clay
stacks (intercalated structures) and individual plate-
lets (exfoliated structure) within the polymer matrix.
Therefore, the orientation distribution function (f) in
eq. (5) would take a constant value (1/8p2) and
would not take part in the integral47 as follows:

Cf g¼1
�
8p2

Z2p
0

Z2p
0

Zp
0

Cijklðh;u;wÞ�sinðhÞdhdudw (44)

As seen, all the elements of eqs. (7)–(9) have been
calculated and a thorough multi-scale micromechani-
cal model has been developed which considers most
of the affecting parameters, including gallery phase
modulus (Eg), IR, silicate layers spacing (d001 or K ra-
tio), number of the silicate layers per stack (N), as-
pect ratio of the intercalated stack (L/t), matrix mod-
ulus (Em) and the total clay weight fraction (Wc,t).
The influences of these parameters on Young’s mod-
ulus of PLSNs containing two distinguished interca-
lated morphologies have been investigated next in
the following sections.

Numerical results and discussion

Here, by employing the new micromechanical
approach proposed in Model development section,
the structural influences (N, d001, IR, Eg) on Young’s
modulus of epoxy-clay nanocomposites containing

two intercalated morphologies have been calculated
as a function of total clay weight fraction (Wc,t).
Because the aspect ratio (L/t) of each intercalated
stack depends strongly on d-spacing between silicate
layers (d001) and number of silicate layers (N), it can-
not be analyzed independently. The cumulative
effects of N and d001 on the aspect ratio of each stack
(L/t) have been discussed in details next in Spacing
between the silicate layers section.

Number of silicate layers per stack (N)

Assuming two distinguished intercalated morpholo-
gies exist, the effect of N2 (number of silicate layers
in feature 2) on Young’s modulus of a typical epoxy-
clay nanocomposite is investigated and shown in
Figure 7. For simplicity, the number of silicate layers
per stack of feature 1 (N1) and the other parameters
have been considered constant and are illustrated on
the top of the figure. As experimentally expected, by
increasing N2 (�1), the nanocomposite’s modulus
drastically decreases. This is due to the fact that at
high values of N, the individual clay platelets touch
each other’s and compose the intercalated stacks.

Spacing between the silicate layers (d001)

The d-spacing between the silicate layers in each
intercalated stack (d001 or K ratio) is the other struc-
tural parameter which strongly affects Young’s mod-
ulus of PLSNs. Figure 8 illustrates the K ratio effect
of feature 2 (K2) on the modulus of epoxy-clay nano-
composite containing two different intercalated mor-
phologies. Comparing Figures 7 and 8 reveals that
d001 (K ratio) is much more influential on the modu-
lus than N, as experimentally reported by the

Figure 7 The influence of N2 on Young’s modulus of ep-
oxy-clay nanocomposite.

Figure 6 TEM image of 10 wt % Cloisite 30A in a dia-
mine-cured epoxy representing random distribution of the
both clay platelets and clay intercalated stacks.46
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researchers.48,49 This important result has not been
considered through the previous models.18,24,25

Although the number of silicate layers (N) and d-
spacing between them in each stack can individually
affect the nanocomposite’s modulus, it is necessary
to consider the cumulative influences of these pa-
rameters when some of the intercalated stacks have
been broken into small ones. Under these circum-
stances, as shown schematically in Figure 9, two dif-
ferent possibilities can be supposed including
increase in aspect ratio (L/t) by decreasing K ratio
and keep in constant by increasing K ratio. In both
cases, the number of silicate layers per stack (N)
decrease, but at the same silicate layer thickness (ds).
Therefore, in the first case, aspect ratio is the domi-
nant parameter while in the second case K ratio is
the dominant factor.

Modulus of the gallery phase (Eg)

Although the previous researchers18,24,25 neglected
the gallery phase properties, recent experimental

results such as those reported in Ref. 33 highlight the
importance of the gallery phase on overall properties
of the PLSNs. Illustrating the contribution of the gal-
lery phase modulus (Eg) on Young’s modulus of
PLSNs is the first outstanding attribute of the current
micromechanical approach proposed in this article.
Figure 10 illustrates the influence of Eg2 (feature 2) on
the modulus of epoxy-clay nanocomposite containing
two different intercalated morphologies in which the
constant parameters are shown on the figure.
Based on the mechanism called the kink model of

melt intercalation, this is quite reasonable that the
polymer chains in the gallery have different confor-
mations from those of the molecules in the bulk of
the matrix. The constraint applied on the polymer
chains within the gallery which results in a more
rigid behavior compared with the bulk of the matrix
has been claimed.50 However, some researchers have
argued a more flexible behavior for the gallery phase
due to the plasticizing effect of the clay surfactants.33

These two scenarios are schematically illustrated in
Figure 11. Therefore, there is a direct relationship
between K ratio and Eg in which both of them dras-
tically increase the nanocomposite’s modulus, as
shown in Figures 8 and 10. However, seems there is
an optimal interlayer spacing (Fig. 11) in which min-
imizes unfavorable interactions between the polymer
chain and the silicate layers. In this case, sufficient
shear force causes a kink to form in the clay sheet as
a form of compression failure. Polymer can then
penetrate the new space between the layers and
kink can propagate along the layer, and more poly-
mer chains can intercalate. This mechanism can
explain the large stiffness of the gallery phase
between the silicate layers.50 In other words, after
the optimum point the gallery phase modulus does

Figure 9 Schematic representation of breaking an interca-
lated stack into small ones illustrating cumulative effects
of K ratio and N.

Figure 8 The effect of K2 on Young’s modulus of epoxy-
clay nanocomposite.

Figure 10 The effect of Eg2 on Young’s modulus of ep-
oxy-clay nanocomposite.
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not significantly change when K ratio increases.
Some researchers33,50 reported that the optimum d001
is about 6 nm which strongly affected gallery phase
modulus (Eg) and finally the nanocomposite’s modu-
lus. Based on the molecular characterization con-
ducted by Manevitch and Rutledge,43 the silicate
sheet thickness (ds) can be assumed about 0.6 nm
and correspondingly, the optimum K ratio would be
about 10.

Intercalation ratio

In addition of gallery phase modulus (Eg), consider-
ing two different intercalated morphologies in vicin-
ity of each other’s, which have been defined using
IR [eq. (39)], is the second outstanding attributes of
the new micromechanical model proposed in this ar-
ticle. In fact, IR demonstrates the concurrent effects

of nanostructural parameters (N, K, Eg) which can be
estimated using TEM images. According to the
results achieved in previous sections, the nanocom-
posite’s modulus increases when N decreases and K
and Eg increases, respectively. Therefore, it can be
expected that by increasing the volume fraction of
those intercalated morphologies, which are attrib-
uted to large K and Eg and small N, Young’s modu-
lus of PLSNs would have been increased. This im-
portant result is quantitatively illustrated in Figure
12 for epoxy-clay nanocomposite using IR definition.

Experimental verifications

To evaluate the multi-scale micromechanical model,
the results of the model have been compared with
both the previous model proposed by the authors34

and some of the experimental data obtained in the

Figure 11 Schematic illustration the effect of K variations on the gallery phase modulus (Eg).

Figure 12 Micromechanical modeling results representing
IR effect on Young’s modulus of epoxy-nanocomposite.

Figure 13 Micromechanical modeling results in compari-
son with the experimental data for PP/clay
nanocomposite.48
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same group for epoxy/clay17 and PP/clay48 nano-
composites.

Figure 13 illustrates the micromechanical results to-
gether with the previous model34 and experimental
data for PP/clay48 nanocomposite. The microme-
chanical results based on the Mori-Tanaka model
shows better agreement with the experimental data
than the previous analytical model,34 however, none
of the models could match the trend of the experi-
mental data. According to Li et al.,51 this discrep-
ancy can be attributed to the possible agglomeration
of silicate layers at higher clay loadings which
results in lower modulus enhancement than that
expected.

Marouf et al.17 used two different types of clay
i.e., DK1 (from FCC) and I.30E (from Nanocor) in an
epoxy matrix to investigate the effect of d-spacing
between the silicate layers in the intercalated struc-
tures. They have shown that increase in d-spacing
between the silicate layers in an intercalated stack
results in increasing the nanocomposite’s modulus.
This important result is well predicted by the new
micromechanical model and is compared with the

previous analytical model together with the experi-
mental data, as shown in Figure 14(a) and (b). It can
be seen that the micromechanical results are again in
better agreement with the experimental data than
the analytical approach proposed by the authors in
their previous work.34

It should be noted that d-spacing between the sili-
cate layers (K) and number of silicate layers per
stack (N) used in the micromechanical model are
estimated from XRD and TEM images, respectively,
as reported in the above experimental works.17,43

CONCLUSION

In this article, a new multi-scale micromechanical
approach based on the Mori-Tanaka model com-
bined with the effective particle concept has been
proposed considering the most important nanostruc-
tural characteristics of PLSNs containing different
intercalated morphologies. These characteristics
include the aspect ratio of both individual clay plate-
let and intercalated stack, the number of silicate
layers per stack, d-spacing between the layers, mod-
ulus of the gallery phase, and IR. It is shown that
the simultaneous effects of d-spacing between the
silicate layers and gallery phase modulus remark-
ably change the nanocomposite’s modulus, com-
pared with the effect of the number of silicate layers
per stack. In addition, it is found that there is an op-
timum point for d-spacing to increase the nanocom-
posite’s modulus which is estimated about 6 nm. In
other words, after the optimum point the gallery
phase modulus does not significantly change when
d-spacing increases. Comparing the micromechanical
modeling results with the experimental data illus-
trates the new approach is more accurate than the
previous model developed by the same authors.

NOMENCLATURE

mm Matrix Poisson’s ratio
mgallery Gallery Poisson’s ratio
msilicate Silicate Poisson’s ratio
d001 Spacing between the silicate layer
ds Silicate layer thickness
dg Gallery phase thickness
K D-spacing ratio (d001/ds)
K2 D-spacing ratio of intercalated phase 1
K3 D-spacing ratio of intercalated phase 2
S Eshelby’s tensor
S2 Eshelby’s tensor of intercalated phase 1
I Fourth-order symmetric unit tensor
E Nanocomposite’s modulus
y,w,/ Euler’s angles
f (y,W,/) Orientation distribution function
Vc Volume of silicate layers per stack

Figure 14 Micromechanical modeling results in compari-
son with the experimental data representing the effect of K
ratio variations on the modulus of (a) Epoxy/DK1 and (b)
Epoxy/I.30E nanocomposites.17
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Vp Volume of an intercalated stack
Vt Total volume of the nanocomposite
Vg Volume of gallery phase per stack
V1 Volume of polymer matrix
V2 Volume of intercalated phase 1
V3 Volume of intercalated phase 2
Gsilicate Shear modulus of the silicate layer
Ggallery Shear modulus of the gallery pha
qm Density of the polymer matrix
C Nanocomposite’s stiffness tensor
C1 Matrix stiffness tensor
C2 Stiffness tensor of intercalated phase 1
C3 Stiffness tensor of intercalated phase 2
T Matrix Wu’s tensor
T2 Wu’s tensor of intercalated phase 1
T3 Wu’s tensor of intercalated phase 2
c1 Matrix volume fraction
c2 Volume fraction of intercalated phase 1
c3 Volume fraction of intercalated phase 2
X Volume fraction of silicate in the effective

particle
XN Number of silicate sheets per unit particle

thickness
t Thickness of an intercalated stack
N Number of silicate layers per stack
Wm Weight fraction of polymer matrix
Wg Weight fraction of gallery phase per stack
Wc Weight fraction of silicate layers per stack
Wc,2 Weight fraction of silicate layers in

intercalated phase 1
Wc,3 Weight fraction of silicate layers in

intercalated phase 2
Wc,t Total clay weight fraction
IR Intercalation ratio
Ep,11 Longitudinal modulus of the effective

particle
Esilicate Modulus of the silicate layers
Egallery Modulus of the gallery phase
qc Density of the clay silicate layers
qg Density of the gallery phase

APPENDIX: COMPONENTS OF ESHELBY’S
TENSOR (SIJKL)

The components of the Eshelby’s tensor for a three dimen-
sional ellipsoidal inclusion with no axes of symmetry [Fig.
1(a)] can be found in the book of Mura.41 In the case of
clay stacks, because a1 ¼ a3 � a2, the equations can be
simplified and are shown below as a function of clay stack
aspect ratio (A ¼ a1/a2)

S1111 ¼ S2222 ¼ ð13� 8vÞp
32ð1� vÞA

S1122 ¼ S2211 ¼ ð8v� 1Þp
32ð1� vÞA

S1133 ¼ S2233 ¼ ð2v� 1Þp
8ð1� vÞA

S1212 ¼ ð7� 8vÞp
32ð1� vÞA

S2323 ¼ S3131 ¼ 0:5
ðv� 2Þp
4ð1� vÞAþ 1

� 	

S3322 ¼ S3311 ¼ v

1� v
1� ð4v� 1Þp

8vA

� 	

S3333 ¼ 1� ð1� 2vÞp
4ð1� vÞA
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